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ABSTRACT

-:The mechanical properties of 3 types of cellular solids (flexible,

plastic and brittle) have been measured as a function of density. The

results are compared with models for the stiffness, strength and den-

sification; and constitutive laws are developed. Data and models for

each type of cellular solid are combined to develop mechanism-mode

maps which summarije the properties in a single diagram. Natural

cellular materials fit the same pattern; maps are presented, as an

example, for wood. The maps help in design and in the selection of

materials for load-bearing and energy-absorbing applications.

o y ...... .. ...:~ i !

r' t.

3 , , or

t.I i' [



:" , 1

TABLE 1: SYMBOLS AND UNITS

,%%

o Applied compressive stress (NI/m 2 ) '

£ Nominal compressive strain (_)

. p Initial density of cellular solid (kg/m3 )

p (c) Density after compressive strain e (kg/r 3 )

P Density of cell wall material (kg/m3)

, p/p Relative density (-)
S

E* Young's modulus of cellular solid (N/m2)

E Young s modulus of cell-wall material (N/m2)
s

ael Elastic collapse or plateau stress of elastomeric (N/m2)

foam

O Plastic collapse or plateau stress of plastic foam (N/m2)
pl

Yield strength of cell-wall material (N/m2)

of Crushing stress of brittle foam (N/m2)

of Modulus of rupture of cell-wall material (N/rn2)

t Cell wall thickness (m)

L Cell size or cell wall length (m)

L (e) Length of uncollapsed members at strain e (m)

t Initial length of an uncollapsed member (m)

I Second moment of area of cell wall or edge (m#)

F Force acting on a cell wall (N)

F Euler buckling load for cell wall (N)
cr

M Fully plastic moment of cell wall (Nm)
p

H Moment which will just fracture cell wall (Nm)
f

C, - C8 Dimensionless constants (-)

h Initial height of sample (m)

h Height after strain c (m)

P Load (N)
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1. INTRODUCTION

Polymeric foams have certain characteristic mechanical properties.

EUastomeric or flexible foams, in simple compression, are linear-elastic

to a strain of about 5 Z. Then the cell walls buckle and the foam col-

lapses at a nearly constant stress (giving a non-linear elastic deforma-

tion) until the cell walls touch and the stress-strain curve rises steeply.

Rigid polymers and metals, when foamed, have a similar stress-strain curve,

but for a different reason. Like flexible foams, they are linear-elastic

to a strain of roughly 5 Z. Then they suffer plastic collapse, compres-

sing plastically at a nearly constant stress until the cell walls touch,

and the stress-strain curve rises steeply. Brittle foams, too, show an

initial linear-elastic regime. But when the stress is reached at which

cell walls fracture, the stress-strain curve becomes irregular (though

- roughly horizontal) and the foam crushes at (roughly) constant load.

Fig. 1 shows, schematically, the structure of cellular solids.

Some have open cells: the solid material is distributed as little

beams which form the cell edges. Others have closed cells: the solid

is distributed as little plates which form the cell faces. The mechan-

ical properties reflect, to some extent, this distribution. In practice,

most man-made foams (even those with closed cell faces) behave as if they

had open cells because surface tension draws much of the solid material

into the cell-edges during manufacture. For this reason, we discuss open-

cell foams in detail, but treat closed cell foams only in passing.

The mechanical properties of a cellular solid can be related to

the mechanics of bending, buckling, plastic collapse and brittle frac-

ture of its cell walls. Each part of the stress-strain curve can be

modelled (1,2,3,4). The models give equations for Young's modulus E*,
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the elastic buckling stress ael, the plastic collapse stress al, the

crushing strength af, and terminal rise in strength, in terms of the

• 2density and properties of the material of which the foam is made.

This paper seeks to test and extend these models, (checking them against

data from the literature and new data, described below), to derive constitutive

laws for design with cellular solids, and to develop diagrams which summarise

the overall mechanical response of each type. Symbols are defined in Table i.

2. EXPERIMENTAL RESULTS

2.1 Foamed PZastics and Cer'aics

We tested samples of commercial flexible foams (a polyethylene and a

polyurethane), samples of a commercial rigid foam (a polymethylacrylimid)

and an experimental batch of a brittle ceramic foam (mullite). The materials,

their origins and the properties of the cell walls are listed in Table 2.

Their structures are shown in Fig. 2.

Compression tests were carried out on blocks of foam of a convenient

0
size (the size depending on the stiffness), at a temperature of 18 C and

a strain-rate of roughly 2 x 1O-3/s. Results are shown in Figs. 3 to 6.

The axes are the nominal stress (the load P divided by the initial

section Ao ):
0•S .-2.-.

P (1)

0

and the nominal compressive strain:

h h
C - (2)

0
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where h is the height of the sample after a strain c, and h is
0

the original height. When foams are compressed beyond a strain of a

few %, there is almost no lateral spreading, so the nominal and true

" stresses are, for all practical purposes, identical. The nominal

compressive strain is, of course, limited to the range 0 to 1.

N.\ All the stress-strain curves show three regions: a linear elastic

region; a long plateau where the stress is almost independent of strain;

and (for all but the brittle foams) a final region of densification in

which the stress-strain curve rises steeply. Young's modulus E * of

the rigid foams was meaured by using clip gauges. The density p of

each foam was measured by conventional methods. Mean values of p, E*

and of the plateau stress a* are listed in Table 3.

2.2 Woods

We also tested a number of woods, chosen to give a range of

relative densities between 0.05 and 0.5. Samples of well-seasoned woods,

roughly 20 mm x 20 mm x 40 mm, were cut with the long direction parallel

to a radius of the trunk (Fig. 7) and parallel to the axis of the trunkL (Fig. 8). The samples were stored for 10 days to reach an equilibrium

moisture content (roughly 12%) and tested in compression at 18 °C and

a strain rate close to 10-3/s.

3. MODELS FOR THE MECHANICAL PROPERTIES

When a cellular material is compressed, the cell walls deform. The

deformation modes (bending, buckling, plastic collapse and fracture) are

known from studies of model cells (2). Two-dimensional models (shown in

insets of subsequent figures) can be analysed accurately (2). With this

knowledge, a kind of dimensional analysis of 3-dimensional cellular

solids (, 3, 4) becomes possible. This analysis,



summarised briefly below, involves, in each case, a single geometric

constant which must be determined by experiment. The data are

analysed to give this constant.

3.1 Stiffness
=,I -4

When a foam is loaded, the cell walls at first bend (1,2,5,6,7)

. as shown in the inset of Fig. 9. A force F, applied as shown,

causes the non-vertical beams to deflect by an amount, 6, which

can be calculated from elastic beam theory:

C1 F 13

S= , (3):: " -E I"
$ .

Here Cl is a factor which depends on cell-wall geometry.

A similar deflection occurs in a 3-dimensional cellular solid,

like those shown in Fig. 1. Considering the open-cell foam, the

force F is proportional to 022 where a is the remote stress;

and the strain .c is proportional to 6/Z. The second moment

of area, I, of a cell edge with section t2  is t 4112 so that

the modulus E* of the foam is:

E * cc E (4)

The dimensions of the open cells are related to the relative

density of the foam P/p, by:

/ / t/l j2 (5)

2
giving: E*" E" = c2 (£ ) (6),

E 2
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where C2  is a constant. The shear modulus scales in a similar

way, because shear deformation in a foam also causes simple bend-

ing of the cell walls. (For closed cells, I Lt3  and p/p t/£.

giving instead E*/E (p/p) ,

Data are compared with eqn. (6) in Fig. 9. The full line is

a plot of eqn. (6) with C2  1. It gives a good description of

a wide range of materials and densities. (We find that plastic

foams deviate systematically towards the line E*/Es = (p/ps

because, we believe, some limited plasticity occurs even under

small loads. Section 3.3, below, explains the power of 3/2.)

Poissons ratios v have been measured for cellular solids (1,3). In the

linear-elastic regime,v Pd+ ., although in the plateau regime it is almost zero.

3.2 Elastic Buckling

|' Flexible foams show extensive non-linear elasticity. I: is

" caused by the elastic buckling of the cell walls (8 ,18), as

shown in the inset of Fig. 10, and it is this that gives the plateau

of the stress-strain curve for elastomeric foams.

The critical load at which a column of length Z, Young's

modulus E and second moment of area I buckles, is given
S

by Euler's formula:.,

E I
F S (7)cr

If this load is reached for a layer of cells spanning the section,

they buckle, initiating the elastic collapse of the foam. For the

3-dimensional open-cell foam of Fig. I the stress ael at which

...l
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this occurs is proportional to F /Z2 . Using the facts that

cr

1- and p/ps c (t/L) 2 we obtain the elastic collapse, or

plateau, stress.

el (P) (8)

-=C3  (8)Es

It is valid for relative densities below 0.3. At higher densities, the

cell walls are too short and stocky to buckle; instead theyyield or crush.

Data for ael for elastomeric foams are compared with

eqn. (8) in Fig. 10. They are well fitted by the equation with

C3 = 0.05.

3.3 Plastic Collapse

If the cell-wall material yields plastically, as do metals and

many polymers, then the foam as a whole shows a plateau caused

by pZastic colZapse. It occurs when the moment on the inclined

cell walls exceeds the fully plastic moment, creating plastic

hinges (2,3,19,20) as shown in the inset of Fig. 11. For a

" * beam of square section of side t, the fully plastic moment is:

. H j-c t+ (9)

The moment is proportional to Ft, and (as before) the force F

is proportional to ao2. Combining these results with eqn. (5)

we find the plastic collapse, or plateau stress a1l to be:

,**

-= , C4 ) (10)G" a
y 

.s:
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Data for the plateau-stress of plastic foams are plotted in

Fig. 11. They are well fitted by eqn. (10) with C4 = 0.3 for rela-

tive densities less than 0.6 (1); at higher densities the cell edges

are too short and stocky to bend plastically ; instead, they shear.

3.4 Brittle Crushinq

Brittle foams (ceramics, and certain rigid polymers) collapse

. by yet other mechanisms: brittle crushing in compression (23),

brittle fracture in tension (24,25). Let the modulus of rupture

(the maximum surface stress at the instant of fracture) for the

*cell-wall material be Then a cell wall will fail as shown

in the inset to Fig. 12 when the moment acting on it exceeds:

Mf = L af t3

The moment due to F is proportional to FZ, and the stress to

F/ 2 . Combining these with eqn. (5) gives.the crushing

strength a of the foam:

:-C7 -)(1
f s

The limited experimental data, shown in Fig. 12, are consistent with

C7 = 0.65 but are insufficient to give much confidence in eqn. (11). But

observations, reviewed elsewhere (4), suggest that the model has the

correct physical basis, and we shall employ it in subsequent sections.

L!
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3.5 Densification and the Shape of the Stress-Strain Curve

The plateau ends when the folding cell walls begin to touch. During

elastic buckling or plastic collapse, the foam compresses axially with

almost no lateral spreading (v 0 0). Then simple geometry gives the

relative density p (e)/p after a nominal compressive strain c as:
s

Ps_ ' L. ~(12)

where p/p is the initial relative density. Densification is complete,

and the stress-strain curve becomes almost vertical, when p (c)/p = 1

when the strain is:

cf = 1 - p/Ps (13)

We find experimentally that the end of the plateau corresponds to..

p ()/p 0.33 (the solid occupies . of the total volume)when the

strain is:

s = - 3 (p/ps) (14)

Consider now the shape of the stress-strain curve for flexible

foams. In any sample of the foam, there is a distribution of cell

edge-lengths and angles. The plateau starts when a layer of cells

(those with longest, or most favourably oriented edges) buckle (eqn. 7).

A small increase in stress is needed to cause more cell edges (those which

are slightly shorter) to buckle. We postulate that the length of

the edges which are about to buckle after a strain c, t (c), is given by:
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9 (C) = s1 ( (15)

- (The value I (c) ranges from X at the start of deformation

to zero when full density is reached.) Using eqn. (12) we obtain:

-

.. ::. C~1- Cps 2 _-*)

cc Cc) = -o (16)1- (p/p s  '"..

The argument of Section 3.2 can now be repeated. The force F

on the cell wall is related to Zo throughout the test by
0 -

*F = L 2 . Collapse of cells with edge-length Z (given by

. eqn. (16)) occurs when this force exceeds the buckling load

given by eqn. (7). Combining these equations gives:

2 I - (P/Ps-.- "
a 0.0/p) 2p

E1 - (pip 1 (17)
S ~s

which reduces to our original eqn. (8) at small strains, but becomes

infinite (approximating Es) at the strain given by eqn. (13).

A similar analysis can be made for plastic fbams. We postulate that

the length of the beams which are about to bend plastically decreases as --

." strain proceeds (because the long ones bend first). If the length at

a strain e is given (as before) by eqn. (16), then by the argument

of Section 3.3, the strength of.a plastic foam follows:
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Es ** 1- (ps I-p))."
S= 0. Y 5I-~~ 5 y) (18)

This reduces to eqn. (10) at small strains, but becomes infinite

(approximating Es) as the foam is compressed to the solid

density (eqn. 13).

These two results give an approximate description of the -

stress-strain curves for flexible and for rigid-plastic " "-.__

foams, in the fields of plastic collapse and densification.

They are combined with the equations for linear-elasticity,

in the next section, to construct deformation-mode maps o-''" ,.

4. CONSTRUCTION OF DEFORMATION-MODE MAPS

We have seen that when an elastomeric foam is compressed, it first

deforms in a linear-elastic way; then its cells buckle to give non-

linear elasticity; and, finally the cells collapse completely and the

stress rises rapidly as their faces and edges are forced together. A ___

plastic foam behaves in a somewhat similar way, except that linear

elasticity is now followed by plastic collapse, and the ultimate

forcing together of the cell walls. With brittle foams, progressive

crushing can again lead to a plateau which ends when the material is

completely crushed. We have seen, too, that each of these processes

can be modelled adequately by using classical beam theory to analyse

the deformation of cell walls. The analysis relates foam properties
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to the relative density (p/ps) and to the properties of the material
S

of which the foam is made. The relations, summarised in Table 4,

suggest a norinalisation which brings the properties of foams with

the same relative densities into coincidence. Then the properties

of an entire family of foams can be shown as a deformation mode map

(4), of which Figs. 13 to 16 are examples. The map has axes of

normalised compressive stress alE and the compressive strain

e. It shows the fields in which each mode of deformation (linear

elasticity, non-linear elasticity, plastic collapse and so forth)

is dominant. Superimposed on the fields are stress-strain con- '....

tours for constant (initial) relative density.

4.1 Elastomeric Foams

Figs. 13 and 14 show mechanism-mode.maps for elastomeric foams.

Fig. 13 shows the experimental stress-strain curves for polymeric

,, foams; Fig. 14 is based on the theory alone. Mechanism field boun-

daries (heavy lines) are shown on both figures. They were constructed

as follows. --

The linear-elastic regime ends when elastic buckling begins. I_

Using eqns. (6) and (8), and the fact that a = Ee in the linear-

elastic region we obtain the strain corresponding to the boundary of V.:
the linear-elastic field:

C 3 -o.os i -

* At relative densities above about 0.3 the cell walls become so stocky that

they can no longer buckle elastically. The field boundary thus bends until

it is tangent to the linear-elastic loading line for p/p= 0.3.

Once elastic buckling starts, the stress is related to the strain -

by eqn. C17). We define the transition from buckling to densification



as the line at which the relative density has reached 4. Then, from

eqn. (14) and (17) the equation of the transition is:

= 9 x 10-2 (1 -C) {1 - (- (19)
ES

It is plotted as a heavy line, sloping down from left to right on the figures.

Fig. 14 shows a theoretical map. The contours are stress-strain curves

m.'."for foams of relative density between 0.01 and 0.4. They show a linear
elastic regime (eqn. 6) and a plateau corresponding to elastic buckling;

they start to bend upwards when densification starts (eqn. 17); and they

approach a limiting slope of E when densification is complete (eqn. 13).

Within the field of elastic buckling the material exists in two states at

almost the same stress (the linear-elastic state and the densified state);

it is like the p-V response of an ideal gas (or the temperature-entropy

diagram for steam) in which gas and liquid states can co-exist. The

material deforms by the formation of densified bands which thicken, at

constant stress, as the strain is increased, until the entire material

has reached the dense state.

The figure describes the overall response of all isotropic, flexible

foams in compression. In tension, flexible foams are roughly linear-

elastic to rupture.

4.2 Rigid PZastic Foams

Plastic foams, like the elastic ones, show three regions: linear

elasticity, plastic collapse and densification - though now the strain

beyond the linear-elastic regime is not recoverable. Figs. 15 and 16

are a pair of maps, one showing our experimental stress-strain curves for

.-- plastic foams, the other, based on the theory alone. Mechanism field-
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boundaries are superimposed on the stress-strain curves.

The boundary of the linear-elastic field (heavy line) is obtained

from the equation for linear elasticity (eqn. 6) and that for plastic

collapse (eqn. 10); its equation is:

a ~a.4(1 (20)

S s

In constructing the map we have taken a/E s to be 0.10 (a fairly typical

value). Next to the linear-elastic field is the field of plastic collapse.

As before, two states of strain co-exist at almost the same stress, so that

complete collapse of part of the structure can occur while the rest is still

elastic; the bands of dense material broaden with increasing strain. We de-

fine the transition from collapse to densification as the line at which the

relative density has reached +4. Then, from eqn. (14) and eqn. (18), the k

equation of the transition line is:

O E ) 1- (21)

It is plotted as a heavy line sloping down from left to right on Figs. 15

and 16.

Fig. 16 shows a theoretical map for plastic foams with aE s = 0.10.

It shows fields of elastic deformation, plastic collapse and densification.

Superimposed on the fields are stress-strain curves for foams with densities

from 0.01 to 0.4.

The figure shows the overall response of isotropic, plastic foams in

compression. It is less general than the map for elastomeric foams because it

must be constructed for a particular value of a /E . But the equations show
y s

that the boundaries are not very sensitive to its value, and, for a given

material, the diagram shows the behaviour for all densities.

_ _ _ _ __' _ _ ." ""C



i-

The behaviour of plastic foams in tension resembles that in com-

pression, truncated by fracture.

4. 3 Brittle Foams

Rigid foams show linear-elastic behaviour to fracture. In compres-

sion, the foam crushes at constant stress (eqn. 11), and since the crush-

ing equation has the same form as that for plastic collapse, the behaviour

" will resemble that of Figs. 15 and 16. If the foam is contained, it will

densify at the strain given approximately by eqn. (18), with a/Es re-

placed by of/Es .

In tension, linear elastic behaviour is truncated by fast, brittle fracture.

The fracture mechanics of foams (28) need not concern us here.

4.4 Woods

These ideas can be applied, in an approximate way, to the compressive

deformation of wood. Woods are cellular solids, composed of mixed polymers

(cellulose, lignin, hemicellulose), and with a relative density ranging from

less than O.OS (balsas) to almost 1 (lignum vitae). Compressed across the

grain, wood behaves like a rigid-plastic foam. Stress-strain curves for

the woods we tested are shown in Fig. 17, plotted on axes of a/Es and

c (data in Tables 2 and 3).

The field boundaries of Fig. 17 were constructed as follows. In

radial compression, Young's modulus for woods is found to follow the same

law as elastic foams (29):

E* 10 ( GN/m 2  (22)
PS

Compressive collapse in the radial direction eqn. (29) starts at the stress:

a* 135 (L ) M/m 2 (23)
PS -

1,S
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' = 0.004

When woods are compressed axially, they collapse by a process which

involves the kinking (30) or fracture (29,30) of the cell walls.

This occurs at essentially constant stress until a critical state

is reached, when the stress-strain curve bends sharply upwards.

Experimentally, we find that the bend upwards occurs at a strain e

corresponding to a density of roughly O.S:

c = - 2 (L)

Combining this with eqn. (27) gives the field boundary:

= 2 x 1O-3 (1 - £)?[ Es

It is plotted as a heavy line on Fig. 18. The figure summarises

the compressive behaviour of woods in the axial direction. Both dia-

grams allow, by interpolation, or the use of the equations, the approxi-

mate prediction of the stress-strain curve for woods of other densities.

S. CONSfIUCTION OF ENERGY-ABSORPTION DIAGRAMS

The commonest use of foams is in packaging. The aim is to absorb

energy (usually the kinetic energy) of the packaged object when it is

dropped, or is accelerated or decelerated in some other way, while at

the* same time keeping the force on the object below the limit which

will cause damage. In selecting a material for the package, we need

to know the energy that can be absorbed without the stresa exceeding

a critical value. We show below that there is an optimum foam density

for a given package. If the density is too low, the foam 'bottoms out'

(with a sharp increase in stress) before enough energy has been absorbed. If
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it is too dense, the stress exceeds the critical value before enough

energy has been absorbed.

Figure 19 shows, inset, part of a stress-strain curve for a foam.

It is linear-elastic to e and thereafter follows the stress-strain

a (c) curve described approximately by eqn. (17) or (18). The area, up

to the strain c*, where the stress is a, (shaded on Fig. 19) is:

W =J d  + a(e) dc

0 C.

.S 2Fs 5 0J ES

E . -

Co

This eq~iation was integrated numerically, using eqn. (17) for a~c) for

elastic foams and eqn. (18) for plastic foamsto give Figs. ]9 and 21.

Similar diagrams can, of course, be constructed directly from its experi-

mental stress-strain curves (such as those shown in Figs. 3 to 6) by

measuring the area W/E up to the strain e* corresponding to the

stress a/Es . Such diagrams are shown, for comparison, in Figs. 20 and 22.

The energy diagram, calculated for elastic foams (Fig. 19) shows the

normalised energy absorbed per unit volume of foam, WE s, plotted against

the peak stress a/Es, for a range of densities p/ps. Normalised in this

way, the diagram describes all elastic foams. If the critical damage

Nstress is selected, then the diagram gives the foam density which will absorb

the greatest amount of energy without this stress being exceeded. The lower

the peak stress, the lower is the optimum foam density. As an example, using

Fig. 19 or 20, the optimum foam density for a critical damage stress a/Es = 10
-

is p/ps = 0.1.. Choosing the right density is important: it can easily give

a factor of 10 greater absorption of energy than a wrongly-chosen foam.
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Figures 21 and 22 show energy diagrams for a plastic foam with

a y/E s = 0.1. Such diagrams are less general than those for elastic

foams, because a /E must be specified; but a single diagram still
y s

describes all foams made of a given material (polystyrene, for

example). Here, too, there is an optimum foam density for a given

S energy absorption and peak stress. The diagram allows it to be

chosen.

The figures show that, for a given material (and thus Es), there is

a maximum energy which can be absorbed for a given peak stress. The

envelope shown as a broken line on Figs. 19 and 21 divides the diagram

into an accessible region (below the line) and an inaccessible one (above).

For elastomeric foams, the equation of the line is approximately:

7/8

W/E5 = 0. 11iQ-)

It applies to all elastic foams. For the plastic foam with a IE = 0.1,

the equation of the line is approximately:

2/3
W/Es = 0.0s( s)

The equations from p/ps = 0.01 to P/Ps = 0.3.

- 6. CONCLUSIONS AND APPLICATIONS

6.1 Conc Zusions

When a cellular solid with a relative density below 0.30 is compressed,

it shows a stress-strain curve with three parts: a linear-elastic part,

a long plateau, and a regime of final densification. The properties of

an entire class of such solids can be summarised as a deformation-mode

map, which shows how each of the three parts changes as the relative
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density changes. The method can be applicd to man-made foams (Figs. 13 to

16) and to natural materials, such as woods (Figs. 17 and 18), to give

diagrams which summarise the stress-strain response of each class of

material.

The mechanical properties of cellular solids can be modelled with

pre'vision. The models lead to constitutive laws (stress-strain relations)

which have been thoroughly tested in simple compression. They are summa-

rised in Table 4. The constitutive laws can be used to construct deforma-

tion-mode maps, and can be integrated to construct energy-absorption dia-

grams. These diagrams (Figs. 19 to 22) show how the energy absorbed,

per unit volume of foam, depends on the density of the foam and on the

stress. The diagrams show that there is an optimum foam density for a

given packaging or energy-absorbing application.

6.2 Design with Cell;sZar Solids

The equations derived in the text, and summarised in Table 4, pro-

vide the basic information for design with foams in load-bearing applica-

tions. The tests described above all involved simple compression.

Under multiaxial loads, the behaviour is more complicated. At small

strains (e < 5 %), while the material is linear-elastic, it behaves

like any other elastic solid (1,3) with Young's modulus E* given by

eqn. (6) and Poisson's ratio v = .. But once the plateau-stress has

been reached, the behaviour changes: the extensive deformation at nearly

constant stress involves a iarge volume change, but almost no lateral

strain (1,3,26,27) so that v % 0. Then the material deforms under a

multiaxial state of stress when the maximum principal stress (not the

iii~i!!ioctahedral shear stress) reaches the critical value d* (eqn. 8 for flex-.',

ible foams, eqn. 10 for plastic foams). Because of this, the indentation

o h a h s s rc t ct llVe fo l
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""hardness of plastic foams is equal to a* (not 3a* 1as in densep p

solids) and the force needed to compress a foam is the same whether

it is free at its edges or constrained there (15). Once densification

starts, of course, the properties revert towards those of conventional

solids.

The deformation mode map for a class of foams provides a compact

summary of the mechanical response of the class, in particular, the

maps give a rational way of selecting the material and density which

will give a desired stress-strain response. Similarly, the energy-

absorption diagram for a class of foam summarises the energy absorbing

capacity of all members of the class. The diagrams identify the optimum

* foam material and density for a given packaging, padding or cushioning

application.
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TABLE 3: EXPERIMENTAL MEASUR-lf.ENTS

SAIPLE p (kg/m 3) E* (Pa) o" (mPa)

EI ASTOM RIC FOAM.S

Dunlop 01 14.4 0.054 0.002
D14 32.4 0.062 0.0025
D17 51.7 0.057 0.005

Frelen F30 29.4 0.275 0.04
F70 69.2 1.10 0.1
F120 120.0 3.82 0.24
1F175 138 4.58 0.3
F250 360 23.45 2.56

PLASTIC FOAMS Tenision Cornp.
Rohucel 31 34 43 20,8 0.4

51 51.6 73.4 28.1 0.8

71 70.4 95.2 56.9 1.6
110 124 194 129.7 3.0
170 160 280 198.7 5.2
190 1B5.7 432 258.9 6.0

BRITTLE FOA4S

S1100 8-50 0.02 -0.18
S2 200 6-22 0.035-0.16
S3 280 2-8 0.072-0.21
S4 320 25-44 0.093-0.16

WOODS Radial Axial Radial Axial Radial Axial
Balsa 103 I03 31 42n O.BO 8.0
Balsa 124 124 79 258 1.20 7.0
Willow 403 355 198 1270 3.70 22.0
Pine 443 - 647 - 6.50 -
Willow 520 385 321 2203 8.25 22.5
Mahogany 615 - 610 -
Beech 711 735 1160 7393 - 50.0
Beech 737 764 1569 7500 - 50.0

- __-_.. ... . .. .. . -- -
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TABLE 4: EQUATION FOR STIFFNESS AND STRENGTH OF CELLULAR SOLIDS

• Eqn. -
Property Equation

E* 2
Young's modulus E = (()s S(6) 7

Plateau stress, 'l = 0.05 2 (8)
flexible foams Es

s s

Plateau stress, a 01-'., = 0.3 (Ps)(10)
plastic foams o

Approximate plateau f (2 0.65 (11)
stress, brittle foams af P

flexible foam Es p. 5  -" ::'
": 1 2 O

Stress-strain response, a 2plastic foam = 0. l (R '18s 5. P- 1y 1 -

sT,

S s a e sS

p tf,,
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FIGURE CAPTIONS

Fig. 1. Schematic of cellular material, showing dimensions.

*Fig. 2. Microstructures of the four types of foam:
(a) polyethylene p/ps =0.115; (b) polyurethane p/p =0.029;
(c) polymethylacrylimide p/ps =0.103; (d) mullite p/ps =0.062.

Fig. 3. Compressive stress-strain curves for flexible polyethylene foams.

Fig. 4. Compressive stress-strain curves for flexible polyurethane foams.

Fig. 5. Compressive stress-strain curves for rigid (plastic) polymethyl-
acrylimid foams.

Fig. 6. Compressive stress-strain curve for a brittle mullite foam.

Fig. 7. Compressive stress-strain curves for woods, in the radial
direction (perpendicular to the grain).

Fig. 8. Compressive stress-strain curves for woods in the axial
direction (parallel to the grain).

Fig. 9. The relative Young's modulus, EVEs, plotted against relative
density. p/ps.

Fig. 10. The relative elastic collapse stress, ael/Es, plotted
against relative density, p/ps .

Fig. 11. The relative plastic collapse stress, a*/a plotted
against relative density P/ps. p

Fig. 12. The relative crushing strength, a /af, plotted against
relative density p/ps, for brittle foams.

Fig. 13. A deformation mode map for flexible foams. It shows the
data of Figs. 4 and 5, normalised. The construction of

the field boundaries is described in the text.
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Fig. 14. A dcformation-mode map for flexible foams, constructed
entirely from the equations developed in the text.

Fig. lS. A deformation-mode map for plastic foams. It shows
the data of Fig. 6, normalised. The construction of the
field boundaries is described in the text.

Fig. 16. A deformation-mode map for plastic foams, constructed
entirely from the equations developed in the text.

Fig. 17. A deformation-mode map for woods, tested in the radial
direction (across the grain).

Fig. 18. A deformation-mode map for woods tested in the axial
direction (along the grain).

Fig. 19. An energy-absorption diagram for elastomeric foams,
constructed from the equations given in the text.
The broken line divides the diagram into an
accessible and an inaccessible region.

Fig. 20. An energy-absorption diagram for elastomeric foams,
constructed by measuring the areas under the stress-
strain curves of Figs. 3 and 4. It is directly com-
parable with Fig. 19.

Fig. 21. An energy-absorption diagram for plastic foams, const-
ructed from the equations given in the text, with

-' Gy/Es = 0.1. The broken line divides the diagram
into an accessible and an inaccessible region. ,..

Fig. 22. An energy-absorption diagram for polymethacrylimid
foams, constructed by measuring the areas under the
stress-strain curves of Fig. S. It is directly com-
parable with Fig. 21.

. ,....' .. :'-



Fig. 1. Schematic of cellular-material, showing dimensions.
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Fig. 2. Microstructures of the four typcsof foam:
(a) polyethylene p/p =0.115; (b) polyurethane p/ps = 0.029;(c) polyimcthylacrylimidc p/p s 0.103; (d) mullite p/p =0.062.
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DEFORMATION MAPS FOR AMORPHOUS POLYMERS

D.G. Gilbert, M.F. Ashby and P.W.R. Beaumont

Cambridge University, Engineering Dept.,

Trumpington Street, Cambridge CB2 IPZ, U.K.

ABSTRACT

This paper explores the possibility of constructing

deformation-mechanism maps for amorphous polymers. Five regimes are

identified: the glassy regime, the visco-elastic regime, the rubbery regime

and the regime of viscous flow (melting), truncated by decomposition.

Constitutive equations for each regime are assembled and adapted gi'e a good

description of a large body of experimental data for amorphous

polymethylmethacrylate and polystyrene. The adjusted laws are -,hen used to

construct diagrams which relate the time-and temperature-dependent modulus,

E (t,T), to the temperature and the loading time (or frequency'. The

diagrams are divided into fields corresponding to the five regimes.

A diagram summarises the small-strain mechanical behaviour of :he polymer

over a wide range of conditions.
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TABLE 1: SYMBOLS, DEFINITIONS AND UNITS

T Temperature (W)

a Tensile or compressive stress (MPa)

C Tensile or compressive strain

c Tensile or compressive strain rate (s )

t Time (s)

*. " V Frequency (s- )

E Time and temperature dependent Young's modulus (MPa)

Modulus at 0 K (MPa)
0
TTemperature coefficient of modulus

T Glass temperature (K)
TD Depolymerisation temperature

Mw cr' e Molecular weights (kg/mol)

Mean activation energy (kJ/mol)

AQ/Q Fractional standard deviation of activation energy
M

az/E Fractional modulus drop at a transition
0

S"aT Shift factor for time-temperature-equivalence

.. Viscosity (Ns/r')

Pre-exponential for viscosity (Ns/m 2 )
0

C L Cv Bulk thermal expansion coefficient below and above T (K"-)

W.L.F. constants (see eqn. 15)

% Density (kg/m)

f Fractional free volume

V Internal energy per unit volume (J/m3 )

R Gas constant (8.314 J/mol K)

E v Energy of formation of vacancies in a crystal (J/mol)v

E. Energy of motion of vacancies in a crystal (J/mol)

A pre-exponential frequency factor (s-)
0



1. INTRODUCTION GAB1, Disc 8

When a polymer is loaded, it suffers deformation which, in general,

increases with time of loading. For uniaxial loading, the resistance to

small-strain deformation is conventionally measured by the time-and
4..°

temperature-dependent modulus, E (t,T) (from now on simply called E).

If, for instance, a constant stress a is applied to a sample of the

polymer, giving a strain e (t,T) after a time t at temperature T,

then:

( (t, T)

Linear amorphous polymers like polymethylmethacrylate (PMMA) or

polystyrene (PS) show five distinct regimes of deformation, in each of which

the modulus has certain characteristics, illustrated in Fig. 1.

(a) The glassy regime, with a modulus of between 1 and 10 GPa, associated

with stretching and bending of intermolecular bonds, and showing

only a slight time dependence associated with a number of

secondary relaxations.

(b) The glass-transition regime, in which the modulus drops steeply from

around 1 GPa to near 1 MPa with increasing temperatu.re or time of

loading.

(c) The rubbery regime, with a modulus of between 1 and 10 MPa, associated

with the rubber-like sliding of the long-chain network of molecules,

constrained by entanglements which behave (physically) like

cross-links.

(d) The viscous regime, at temperatures well above the glass transition

temperature, in which the polymer can be thought of as a viscous

liquid; its molecules move relative to each in a snake-like manner

(reptation) which, when biased by stress, leads to viscous flow.

-e) A regime of decomposition in which chemical breakdown begins.

Each regime is associazed wirh a cer-an range of modulus. c has

been sl:udied and modelled in more or less de zail, and constitutive laws

for each have been formulated - they are reviewed below. Experimentni-

data for E, in each, are available for PMMA and PS. Our aim
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here is to fit the constitutive laws to the data (requiring some

modification to the models) and to examine how the laws can be combined to

give a self-consistent description of small-strain deformation from 0 OK to

above the melting temperature, and for all practical loading times. The j
,*. results are assembled into diagrams which summarize the small-strain

deformation behaviour of each polymer as a function of temperature, time and

frequency.

We now examine the five regimes in more detail, reviewing, and

selecting, among the constitutive laws for each. Symbols and their

definitions are listed Table 1.

2. DEFORMATION MECHANISMS

. The Glassy Regime and the 6 , y and 6 Relaxations

Well below the glass temperature, T, linear amorphous polymers have

Young's moduli of, very roughly, 3 GPa. This is a direct reflection of the

low-stiffness Van der Waals bonds which bind one chain to another as shown

as dotted lines in Fig. 2: when the polymer is deformed, it is these bonds

--. ' which stretch and bend. The covalent C-C bonds which form the chain

backbone (full lines) are about 100 times stiffer than the Van der Waals

bonds, and their stretching and bending contributes nothing significant to

the elastic deformation. Rotation about a C-C bond is another matter: the

single C-C bond rotates so easily that it is problems of steric hindrance,

and thus the Van der Waals bonds, again, which limit its

extent (Bowden, 1968; Yannas, 1974; Yannas and Luise, 1982).

"I f the internal energy of the polymer, per unit volume, is V (e),
then the glassy modulus at 0 K is calculated (in principle) by forming the

second derivative of V (e) with respect to e:

d' V (c)

The difficulty is that of modelling V (e) with enough precision to give

more than an order-of-magnitude estimate of the modulus. To do so requires

a potential function describing the Van der Waals bonds. Part of the

elastic strain comes from bond stretching; then, commonly, a Lennard-Jones
potent4al s summed over all molecules -o give V (c). Strain can also
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result from rotation of segments of a single molecule about a C-C bond

such a way that the molecule changes shape, (Bowden, 1968; Yann.s, 1974).

Then a potential which includes steric hindrance (Flory, 1969) must be used

to calculate V (e). But the fundamental understanding of intermolecular

bonding in polymers is still too poor to allow V (e) to be computed

accurately from first principles in either case (in practice, experimental

data for E are used to calibrate the potential functions, rather than the

other way round). Instead, the modulus at absolute zero, Eo, is obtained

by extrapolating experimental measurements of E at slightly higher

temperatures to absolute zero. It, and other material properties, are

listed in Table 2.

Increasing the temperature has two distinct effects. First, thermal

expansion increases the molecular separation and lowers the Van der Waals

restoring forces: this gives a slow drop in modulus, but does not introduce
a time or frequency-dependence. Second, the thermal energy of the molecules

permits thermally-activated local rearrangements (usually, rotations about a

C-C bond), giving time-dependent strain and an associated drop in modulus.

The first effect leads to a roughly linear decrease in modulus with

increasing temperature. Yannas and Luise (1982) develop this idea: thermal

expansion increases the inter-chain distance, reducing the force required

* for intermolecular deformation by bond stretching. The final form of their

equation is cumbersome but simplifies to a linear relationship at low

temperatures. Van Krevelen (1976) prefers the empirical relation:

E = E /(l + 2 T/T
o g

which, of course, is linear at low temperatures, but drops faster near T

.. In this paper we use a linear temperature dependence:

E E (1- T (3)

0 m

to describe the drop in modulus caused by thermal expansion. The

dimensionless coefficients a which best described the low temperature datam
for each polymer are listed in Table 2.

The second contribution comes from the small thermally-activated
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* rearrangements of side groups or short segments of chain at "loose sites" in

, the amorphous structure (Fig. 3). These relaxation processes, all occurring

- at temperatures below T (and known, in order of decreasing temperature,
g

as the B, Y and 6 relaxations) give additional strain, and they thereby

reduce the modulus a little. Each relaxation is positioned for a given

loading time or frequency, about a characteristic temperature at which

thermal energy becomes sufficient to activate the rearrangement.

Like similar relaxations in crystalline solids, the response of the

material to load is conveniently described by a rheological model. The

simplest that is of any real use is the standard linear solid (Fig. 4a),

composed of to springs of modulus E and 6E, and a dashpot of viscosity:

: = 1o RT (4)

r* where Q is the activation energy for the process, R the gas constant and --

n a constant which is chosen to fix the position of the drop in modulus.

The standard-linear model gives a good phenomenological description of most

anelastic relaxations in crystals, and relaxations in glasses do, very

roughly, have the same characteristics. But more careful examination of

data for amorphous polymers shows that the standard linear solid is too

simple. Its response leads to an almost step like drop in modulus at the

characteristic temperature; the real relaxation is broader (Fig. 5). This

is no surprise. In PMMA, for instance, the B-relaxation is thought to be

caused by a motion of the ester side-group, the Yr-relaxation by the motion

- of one of the two methyl groups and the 5-relaxation by the motion of the

other one (Fig. 3). The amorphous chain-packing grips some of these more

tightly than others, so that each relaxation has a spectrum of activation

energies. The response is then more realistically described by the parallel

coupling of springs-and-dashpot units shown in Fig. 4(b), each dashpot

describing a part of the activation energy spectrum.

This arrangement of units, rather than a more general one involving units

in series and parallel, is justified in the following way. Relaxation involves

the motion of isolated side groups - those which, at a given instant, are less

tightly gripped than the rest. Each can be thought of as a small spherical volume

in which viscous deformation takes place, embedded in an elastic matrix. The

constitutive equation for a material consisting of viscous inclusions in an

elastic matrix is discussed by Brown (1982): provided the dispersion of

viscous spheres is dilute (meaning t'hat they are well separated), the
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material behaves like a standard linear solid (as in Fig. 4a). If each of the

spherical volumes has a different activation energy (as is the case for the

side-group relaxations discussed here) the same reasoning leads to the

conclusions that the material behaves in a way described by Maxwell
elements in parallel, as in Fig. 4b.

As explained, the spectrum of activation energies arises from

differences in local packing density which makes it harder to move

some side-groups than others. We have used a Gaussian distribution of

activation energies with a mean Q and a standard deviation AQ. The
m

proportion of units (that is, the fraction of the spheres) which relax

with activation energies between Q and dQ is f (Q) dQ where:

Q 2

f (Q) _ - exp -Y ( (5).- v '; AQ ,

This defines a weighting function for each unit (Fig. 6) so that the modulus
th

drop 6E. associated with full relaxation of the i unit is:

SE. = AE f (Q) dQ (6)

where 4E is the total modulus drop associated with the relaxation. This

method introduces only one new variable, the standard deviation, AQ, into

the calculation of the relaxation; it is chosen so that the width of the

relaxation (Fig. 5) matches experiment. Data for AE, Q and aQ/Q
m M

PMMA and PS are listed in Table 2.

The Glass-Rubber Transition (The Visco-Elastic Regime)

As the temperature is raised, the Van der Waals bonds start to melt.

'Then segments of the previously elastically-bonded chains undergo larger

sliding movements relative to each other and the material behaves in a

visco-elastic way. Within this regime it is found that the modulus E at

.. one temperature can be related to that at another by a change in the time

scale only, that is, there is an equivalence between time and temperature.

This means that the curve describing the modulus at one temperature can be



7

superimposed on that for another by a constant horizontal displacement

log (a.) along the log (t) or log (v) axis, as shown in Fig. 7.

Incytliesolids (notably metals) the tietmeaueequivalence

for the rate of diffusion, for creep, and for other thermally activated

processes, is well known. The explanation is straight forward. Take

diffusion as an example. The frequency with which an atom jumps from one

lattice site to the next depends on the product of two probabilities: the

probability P, = exp - (E./RT) that the diffusing atom has enough energy

to clear the barrier (height E.) which separates the tnao sites; and the

probability p, = exp - (E v/RT) that the second site is vacant, since if it

is occupied the jumping atom cannot enter it. The jump frequency is then:

.. E
=V exp (-I) exp v = exp-(:) (7)
o RT ~ RT~ o T

where Q = E E is the activation energy for the process, and ' is
J v 0

the atomic vibration frequency times various entropic and geometric terms

which don't affect the arguement. A change of temperature from T, to T.

causes a change in frequency from ' to v , where:

"""" 0 1_ 1,

log log aT = .3R T, TJ (8)

A simple shift along the frequency or time axis by log (a) then brings
the response at T, into coincidence with that at Tz. This particular

time-temperature equivalence is a consequence of the operation of a simple

thermally-activated process with a single activation energy.

A spectrum of activation energies (which is inevitable in an amorphous

system) does not destroy the time-temperature equivalence though it may

change its form. If the width of the spectrum, aQ, is small (so that

.a >> RT) then it is easily shown that the shift factor defined by eqn. (8)

still applies, and the relaxation follows simple Arrhenius kinetics. The
a , y and relaxations do, in fact, give linear Arrhenius plots; those

for PMMA and PS are shown later. But the a , or glass-rubber transition

is more complicated. Experiments on liquids and on amorphous polymers

(Williams et al., 1955) are not well described by eqn. (8); they suggest,
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instead, a shift factor (the "WLF" shift factor) given by:

C, (T - T
"'-log ar -

log aT C2 T T
g

where C, and C 2 are constants (the "WLF" constants, with T as
g

reference temperature). In the limit T >>C Z - Tg this reduces to the

simpler eqn. (8) with C, = Q/2.3 RT But the values of C2  are such
g

that this is never a satisfactory approximation and a new, broader, physical

interpretation must be sought.

The quest had produced a number of models (for brief reviews, see Ward,

1971; Arridge, 1975; Young, 1981). From these the following simplified

picture can be assembled and related to the classical treatment

of thermally activated processes in crystals just described. Viscous chain

- motion is caused by the stress-biased diffusion of polymer chains within the

tubes which define their surroundings, as shown in Fig. 8. This snake-like

diffusive motion, or "reptation", must involve the propagation of

compression or shear wave pulses or kinks along the chain: in either case,

the projecting side groups of one chain must move over and past those with

which they mesh in the surrounding tube, as shown in Fig. 9.

The frequency of the unit step associated with producing viscous strain

depends, as before, on the product of two probabilities: the probability

P, that unit segments of the polymer chain have enough thermal energy to

jump over the energy barrier which separates them from an adjacent position;

and the probability p that this second site is "vacant", i.e. that it has

sufficient unoccupied volume associated with it to accommodate the jumping

segment. The'first probability, p,, is given by an Arrhenius law like

eqn. (7). The second probability, p is more complicated. In crystals,

unoccupied or "free" volume is quantized as vacancies of fixed volume. Free

volume exists in amorphous systems too, but it is obviously not quantized in 2]
the way it is crystals. When the specific volume of an amorphous polymer is

plotted against temperature (Fig. 10) there is a change of slope at T
g

The free volume (Cohen and Turnbull, 1959; Haward, 1973) is the difference

between the total volume, V, and that occupied by the molecules

themselves, Vo. The occupied volume is that of a dense (though disordered)

packing of cylinders, one surrounding each chain, with a radius equal to the

Van der Waals radius plus that associated w.th the local thermal vibrations

of the atoms. What is left over is "free" in the sense that it z .

E-'
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redistribute continuously. 'nstead of a thermal-equilibrium concentration

of vacancies, each of fixed volume, which move around continuously, the free

volume exists (in thermal equilibrium, of course) as a spectrum of void

volumes which continuously open up and close again. The thermal expansicn

data show that (unlike crystals) the free volume increases linearly with

temperature. Defining the fractional free volume as:

V -V-
0 (10)

we have that:

f fg T ((T)

where f is the fractional free volume at the glass temperature. The

quantity a is the free-volume expansion coefficient: it is the difference

between the total expansion coefficient and that for the occupied volume.

The figure shows how the value of af changes at T ; above T it is
g g

large, below it is much smaller (some authors take it to be zero, but we

find in Section 3 that a small finite value may be more realistic). The

probability, p2, is then the chance that, adjacent to a jumping segment, a

local free volume of f or greater is available (f is the fractional
c c

volume required to accommodate the dumping segment). This probability

(Bueche, 1953) is:

Af
p,= exp (12)

Then the viscosity at temperature T, relative to that at T is given by

P, (T) p, (f)/p 1 (T) p, (f ), or:

n (T) _ x .., i, 1 1
expR 'T T exp - (13)

S(T) g g

where 3 = Af . 'Well below r the free volume is almost independent of
c g

temperature (Fig. 10); then the first term is dominant and we find

Arrhenius behaviour (though with a spectrum of activation energies). At and

Just above T;, on the other hand, f, increases rapidly with temperature;T& Vb

and it is probable that O, correspondingly, decreases; -hen the second

.ern 4s dominant. -xperiments on '/.scous __qu s su.port this

view: Doolittle (1951, 19521 oresents data wnicn are well described by:
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= T exp { B(1 (14)
n (Tg f f

9g

with the constant B close to unity. Substituting eqn. (11) leads

immediately to the WLF equation:

- (B/2.3 f )(T - TlogaT lg (T) ______ _ 9(15)
lOgaT= log n (T ) f /a + T - T

g g f g

with C = - B/2.3 f and C2 = fg/a One of the many achievements of the
g 

.f'

work of Ferry and his co-workers (Williams et al., 1955; Ferry, 1961) is the

demonstration that C1 and C2  are universal constants at and above T

The same constants describe polymers also, implying that f and af, too,g
are universal constants. It is helpful to note their magnitudes: taking

B = 1, the fractional free volume at the glass temperature, fg, is found

to be 0.025; and the free-volume expansion coefficient above Tg, a is
i f

4.8 x 1O-/K. Both values are physically plausible. But, as before, the

simple rheological model of Fig. 4(a) leads to a modulus which decreases

too steeply with temperature. A much better fit to the data is given by the

distributions of Fig. 4b, introducing (as before) one new parameter: the

standard deviation or-= AC /'Cl, and using it in the same way that

AQ/Q was used earlier.

The Rubbery Modulus

Above Tg, the modulus of linear, amorphous polymers often show a

plateau at around 1 MPa. This is close to the modulus of weakly

cross-linked rubbers and arises, as far as is known, in a similar way. in
the rubbery state, the weak intermolecular (Van der Waals) bonds have

p- ->
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assume a variety of configurations in response to the thermal vibration
which causes a "micro-Brownian" motion of the units of the chain. The most

probable configurations are those which maximise the entropy of the system.

Bu tnere is a constraint; the molecular -cnai.ns curl

and zwist a-ourd each other; in places they form mechanical entanglements

which behave very like chemical cross-links (Fig. 11). When strained, the

chains tend to order (by lining up) and the entropy decreases; they are

prevented from wriggling back to a disordered state by the entanglements.

The rubbery modulus is related to this change of entropy by an equation

which is the analog, for entropy-induced elasticity, of eqn. (2):

E= T

dc"

where S (€) is the entropy per unit volume as a function of tensile strain

Standard texts (Treloar, 1958; Ward, 1971; Young, 1981) summarise the

calculation of the rubbery modulus from this entropy-dominated model. For

small strains the result is:

3 (T) RT

e

where P (T) is the density of the rubbery polymer,- R is the gas

constant, T the temperature and is the average molecular weight

between cross-links or (here) entanglement points.

The statistical mechanics of entanglements in linear polymers is, at

present, beyond the scope of rubber theorists; .4e cannot be calculated ande

is derived instead from data for E by using eqn. (16); values are listed

in Table 2. This means that the entropy model of rubber elasticity has not,

strictly speaking, been verified for linear polymers, although it is

difficult to visualise another cause for the rubbery behaviour; and the

values of M derived from the equation are physically sensible.
e

At first sight, eqn. (16) suggests that the modulus in the rubbery

regime should increase with increasing temperature, and for many

cross-linked rubbers, it does. But the density decreases with increasing

-emperature. If the density at some reference temperature (say, T is

.! fT ) and the volumetric coefficient of thermal expansion is a -hen
g"v

m
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the density at some higher temperature T is:

p (T)

T - T ) (17)

This change in density (which is included in our calculations) cancels, to

some extent, the explicit temperature dependence of eqn. (16).

Further, it is likely that the weaker entanglements unravel as the

temperature is increased so that M too, increases with temperature.

The combined influence of this and of thermal expansion leads to the plateau

(usually with a slight negative slope) seen in experiments.

Rubbery and Newtonian Viscous Flow

At high temperatures (T k 1.2 T ) the Van der Waals bonds melt

completely and even the entanglement points slip. This is the regime in

which thermoplastics are moulded; the polymer behaves like a viscous liquid.

For a given polymer system (such as PMMA) the viscosity, n , depends on

the molecular weight, M and the temperature T. The time-and-
w

temperature dependent modulus (at constant stress) is simply:

E = CT) (18)
t

Two regimes of flow have been identified. Immediately after the rubber

plateau, the polymer flows in a way which has the same time-temperature A,

equivalence as that of the visco-elastic regime (eqn. 9) implying that it is

controlled by free volume. This is generally called "rubbery flow". Then

the viscosity is given by:

C, (T - T

n n = exp Cz + T - T (19)

At higher temperatures and low shear rates, flow becomes Netwonian viscous,

and follows an Arrhenius law with a narrow spectrum of activation energies,

so that:

= exp (20)

17 _
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The value of n depends on the molecular weight, M , in one of two
0

4. ways. Below a critical molecular weight, M cr, the viscosity is

proportional to molecular weight so that:

w (21) F
"" cr Fc '-

cr

where n r is the viscosity of a melt with molecular weight Mr. But

above Mcr, the dependence changes such that:

M4 3.4

cr M (22) I
Commercial polymeric systems are in this second regime; and in the range of

temperatures covered by the diagrams shown in the next section, rubbery flow

dominates.

The understanding of this behaviour is still incomplete. Progress in

physical modelling has been made by Doi and Edwards (1978a,b,c, 1979) who

extended work of Rouse (1953) and of De Gennes (1971) to describe the

process of polymer-chain reptat:.on. The polymer chains behave like tangled,

flexible strings, each enclosed in a tube made up of the surrounding mass of

polymer (Fig. 8). Extension or shear of the polymer requires the diffusive

motion of the string in its tube. In the Rouse (1953) approach, the

Brownian motion is resisted by a Stokes friction;,equivalently, compressive

or tensile kinks are formed on the chain and diffuse along its length

(Fig. 9): the passage of one kink along the entire chain displaces it by the

kink-stretigth, b. If the chains are short and straight, as in Fig. 9, the

time required for a kink to diffuse along a chain is simply proportional to

the molecular weight. But if the chains are long and tangled, the

(stress-based) random walk, or reptation, of a chain in its tube is more

complicated. Doi and Edwards (1978a,b,c,) and Doi (1983) show that the

viscosity should then vary as in fair agreement with the observations
described by eqn. (22).

Data for the quantities n', M, Mcr are listed in Table 2.

--. 4
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Decomposition

If the polymer gets too hot, the thermal energy exceeds the cohesive

energy of some part of the molecular chain causing depolymerisation or

degradation. Some (like PMMA) decompose into monomer units; others (PE,

for instance) randomly degrade into many products. It is commercially

important that no decomposition takes place during high temperature

mc'ilding, so a maximum safe working temperature is specified for each

polymer; typically, it is about 1.5 T (Table 2). We have truncated the
g

deformation diagrams at this temperature.

3. DATA FOR PMMA AND PS

- In the last section, we discussed constitutive laws for each of the

four main deformation regimes. We now fit data to these laws, extracting

values of the parameters (like Eo, am' QmP &Q, T , etc.) which best
m g

describe the data. The final choice of parameters has already been

presented in Table 2. But the method used to obtain them is an important

part of the process for constructing the maps shown later - The data

are drawn from many saurces , referenced in the text

and on the figures.

Thermal and Structural Data

Glass temperatures, measured calorimetrically and by dilatometry, are

listed in Table 3. We have selected the values shown in Table 2 as the most

reliable. The thermal expansion coefficients (Table 2) are from Yannas and

Luise (1982), Williams et al. (1965) and Van Krevelen (1976). The molecular

weights given in Table 2 are typical values for commercial PMMA and PS,

though, in practice, they vary widely depending on the supplier and the

grade.

The Glassy Modulus and the Secondary Relaxations

The modulus at absolute zero, Eo, and its temperature dependence,

1, were obtained by extrapolation from above 4 K, using the data of

... ...,:- A



15

Sinnott (1959, 1962). The values obtained in this way for PMMA are close to q.

the average for all the available data; and those for PS are supported by

data from Bondi (1968), (Table 4).

The mean activation energy for each of the secondary relaxa-
M

tions is found by plotting the log of the time t (or frequency v
for the centre of the transition (or of the damping peak) against l/T. It

is found (e.g. McCrum, Read and Williams, 1967) that the data follow a

simple Arrhenius law:

1 C. mP -i,J -ex- (23)

so that the plot gives a stright line with slope Q /2.3 R. For PMMA

(Fig. 12a) the 8-relaxation has a mean activation of 121 kJ mol" , in

agreement with the measurements of Iwayanagi and Hideshima (1953 a,b) and of

Sato et al. (1954). The activation energy for the 8-relaxation is

13 kJ mol - . For PS (Fig. 12b) the 8-relaxation has a mean activation

energy of 132 kJ mo - . Only two data points (Crissman et al., 1965;

Sinnott, 1962) are available for the 6-relaxation in PS so Q was

calculated from these directly.

When the transitions are well separated (as they are for PS) the drop

' in modulus 6 E can be measured directly. When this is not so (as for

PMMA), &E for each transition is adjusted to give the best fit for the

overall drop in modulus. Finally the spread of activation energies,

aQ/ , is chosen by trial and error to match the breadth of the

transition. The parameters which fit various groups of data are listed in

Table 5 and abstracted in Table 2. The predictions of the rheological

model, using these parameters, are compared with raw data in Figs. 13 (a),

(b) and (c). In practice, the $-transition in P4MA and :he y-transition in

PS have a very small effect on the moduli (AE < 0.1 GPa) and they are

ignored in constructing the diagrams.

%1.A
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The Glass-Rubber Transition and the Rubbery Modulus

The glass-rubber transition, too, is modelled by the rheological Ii
model shown in Fig. 4(b). The modulus drop AE

is the difference between the glassy modulus kreduced by

the modulus drops associated with the secondary transitions) and the rubbery

modulus. The mean value of C, and its standard deviation

were chosen as described earlier. For PMMA, a standard

deviation of 0.055 gives a good fit to data (Fig. 14a); for PS, the value

0.08 gives a good fit (Fig. 14b).

The rubbery modulus is related to the molecular weight between

entanglements Me by eqn. (16), The most recent measurements for

commercial polymers are those of Seitz (1979) and it is his data that we

have used to select M for PS. But for PMMA a range of values for the

rubbery modulus and density have been reported. Results derived from these
are listed in Table 6; the value we have selected for M is about half the . .-

e
value given by Seitz. The density P (T) at the glass temperature was calculated

oy extcolat ng data for P frcm -te messurement teffperaii-e to T

Figure 15 shows the experimental shift factors, log aT, for PMMA and

. PS. Above T they are well fitted by the WLF equation (eqn. 9) with

values of C, and C2  which are consistent with values of f and a

listed in Table 7. The figures show that at T there is a discontinuityg
in slope of the shift factor. The expansion data given in Table 7 suggest

that a is smaller below T but that it is not zero. We have therefore

used the WLF equation below Tg, with a new value of C2 , calculated from
the data in Table 7. The final choice of C, and C2  are listed in

Table 2. The viscosity in the viscoelastic transition has been calculated

as described in Section 2, using these parameters in the WLF equation.

Rubber (Glass) - Viscous Transition and Decomposition

Data for viscous flow are summarised in Table 8. The modulus is

calculated by using eqn. (19) with the data listed in Table 2, including a

" spread of the contant C, Decomposition data are summarised in Table 9. II.
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4. DEFORMATION-MECHANISM DIAGRAMS

Construction and Features of the Diagrams

The previous sections have described the broad regines of

deformation behaviour for linear amorphous polymers, between absolute zero

and the decomposition temperature. Physical models exist for each

deformation mode, leading to constitutive laws which describe the time

and temperature dependent modulus Z; the values of the parameters which

enter the laws are known, at least approximately (Table 2).

We now ask: over what range of time and temperature is a given

mechanism dominant? And when do the changes of mechanism appear? For each

mechanism, the constitutive equation takes the form:

- f (t, T, material parameters)

or (24)

E :, f (', T, material parameters)

where t is the loading time (or v is the frequency) and T is the

absolute temperature. The dominant mechanism for a given T and t is the

one which leads to the lowest value of E. Mechanism changes take place

along the lines obtained by equating pairs of the constitutive laws.*

Figures 16 to 19 show deformation mechanism diagrams for PMMA and PS,

constructed from the constitutive laws of Section 2, using the parameters of

Table 2, combined in the way we have just described , and detailed in the Appendix.
-iey sham :!"e t=L- and tawrpetue-depaent modulus, E, for a rurbe of differet loading

conditions, as a function of temperature and frequency of loading.

Figures 16 and 17 show the dynamic modulus of PMMA over the full ranges

of temperature and frequency that can be realised in practice. In Fig. 16,

*The response of the rheological model for the relaxations is evaluated

numerically, summing the Gaussian distribution of activation energies over

3.Q on ei:her side of '
VP,
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the axes are E and T; the contours are lines of constant frequency. The

four regions are roughly distinguished by the range of modulus which

characterises them, as suggested by Tobolsky (1960), though strictly it is a

field of values of E, T and j , not merely of E, which characterises a

mechanism. In Fig. 17 the axes are E and v (plotted inversely to make

the diagram comparable with diagrams which have time as abscissa: see

Gilbert, 1984). Here, too, the four mechanism-regimes are distinguished by - -

a range of values of E. Figures 18 and 19 show similar diagrams for PS.

They closely resemble those for PMMA.

Influence of Polymer Chemistry and Molecular Weight

It seems probable that these diagrams for PMMA and PS are broadly

typical of those for linear amorphous polymers. By normalising the

temperature scale by T, the lowest-order effect of differing polymer

chemistry are removed.

At any more detailed level, of course, there are effects of polymer

chemistry and molecular weight. In the glassy regime the secondary

transitions are determined by the nature of the side-groups, since these

influence the packing of molecules in the amorphous state and so define the

width of the transitions. ( The experiments of Fujimo et al. (1961), on

co-polymers of PMA and PMMA, for example, show that the larger the

sidegroups, the more difficult it is to pack the chains, and the broader is

the glass-rubber transition.) The extent of the rubbery regime, too,

- depends on the molecular weight of the polymer. Reducing the molecular

weight shifts the contours in the viscous flow regimes to the left, and

reduces the extent of the rubbery plateau or removes it altogether.

McLoughlin and Tobolsky (1952), for instance, find that PMMA with a

molecular weight of 3600 kg/mol shows a pronounced rubbery plateau, while

that with a molecular weight of 150 kg/mol shows none. Other studies of

the extent of the rubbery regime can be understood in these terms

(Vinogradov et al , 1971). And the viscosity of the melt regime, too,

depends on molecular weight (Van Krevelin, 1979), though the differences

scale, broadly, as T

We expect, therefore, that linear amorphous will be described by

diagrams like those of Figs. 16 to 19, with small differences caused by

molecular -weight and architecture.
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5. SUMMARY AND CONCLUSIONS GAB3, Disc 8

Maps can be constructed which summarise the time-and-temperature

dependent modulus of amorphous polymers, E (t,T), for a wide range of

temperatures and times, under various loading condi-tions. Several separate

- " mechanisms are involved: bond stretching, constrained molecular movement and

larger scale molecular sliding, rubbery behaviour constrained by

entanglements and true viscous flow. Each mechanism can be modelled (though

with differing levels of physical realism) to give constitutive equations

which describe how the modulus E (t,T) depends on temperature, time or

frequency of loading, and on material parameters which characterise the

chemistry and molecular architecture of the polymer. We have assembled

material parameters for PMdA and for PS and used them, with the constitutive

* . equations, to construct the maps shown as Figs. 16 to 19.

It is probable that the maps shown here are broadly typical of linear

: amorphous polymers (though maps for others can readily be constructed using '1

the same method). The same approach can be adapted to describe amorphous

thermosets and rubbers, and, with further changes, to commercially

significant semicrystalline polymers such as Nylon and PE.

The maps shown here describe small-strain behaviour. The next step, we

believe, is to develop a parallel approach for large strain deformation

which is capable of including cold drawing, shear bandidg, twinning and

crazing.
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TABLE 3: GLASS TRANSITION TEMPERATURES (HIGH MW "4

Material Glass Temperature, T (K)

?NM'A 37 8a) 37 8b) 3770) 3 77d) 38 8e) 37 8f) 3-

PS 3 7 3h) 37 3
i ) 389 j ) 37 3g)

a) Loshaek (1955); b) Rogers and Mandelkern (1957); c) Wittmann and
Kovacs ( 1969); (d) Fox et al. (1958) e) Berry and Fox (1967);
f) Van Krevelen (1976); g) Fox et al. (1976); h) Fox and Flory (1950);
i) Plazek (1965); (j) Schmeider and Wolf (1953).

TABLE 4: YOUNG'SMODULUS AND TEMPERATURE DEPENDENCE*

Polymer Modulus, E
_______" GPa 0 m

PMMA 8 . 5 7a) 0.28 (a
b)

10.51-

7.70) -

PS 6.21 d )  
0 .28 d)

b)
5.80

6.250)

* E is Young's Modulus extrapolated to 0 K; am is the normalised
0

temperature dependence (eqn. 3).

a) Sinnott (1959) Extrapolated from 4 K and calculated from G assumingV = 0.33.

b) Yannas and Luise (1982) Numerical average from other sources (c) and
(d) are included in the PS average.

c) Bondi '1968).

d) Sinnott (1962) ExtrapoLated from 4 K and calculated from G assuming
v= 0.33.
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TABLE 5: SECONDARY TRANSITION DATA

QPolymer Transition M AQ"-" ( olP(K) ( kjmol " ).

'MMP 75 .4a) 2831) 3.55p) 24P)"- 121 .*5b,) -

75.4 c)

71.2e)

y 13.0 100 1.66P) 2.57x)

PMMA 6 <20.99) <4.2n )  <,.In) -

<0.1 q
'

PS B 125 .7 30oo )  
0 .2P) 55x)

138.3""
PS 

33 .5J) 132J) .0.07 r)

O.075J)
PS 6 9 .4 . 36 .1.793)

> 1 *.)

-* is the mean activation energy, T* the temperature

characterising te daping peak at a frequ, wy of 1 Hz, &E e modeniUs
... associated with t asi it3cn and A Itead in Q rMuaied
to fit the experimental data.

a) Deutsch et al 1954
b) Iwayanagi and Hideshima 1953a, 1953b
C) Heljboer 1956
d) Sato et al 1954
e) McCrum and Morris 1964

f) Sinnott 1960
g) Johnson and Radon 1972
h) Yano and Wada 1971
i).Connor 1970
J) Illers and Jenckel 1959
k) Calculated frcn S) and t).1- J) Illers and Jenckel 1959
k) Calculated from s) and t)
1) Heijboer 1965
m) Powles and Mansfield 1962
n) Sinnott 1959
o) Illers and Jenckel 1958
p) Best fit to data this study
q) Crisaman et al 1964, 1.965
r) Schmieder and Wolf 1953
3) Crissman et al 1965
t) Sinnott 1962
u) Bondi 1968
w) Hendua et al 1959
x) Estimated value using the method descrited in -.he :ex,:
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TABLE 6: MOLECULAR ENGANTLEMENT WEIGHT, DENSITY AND EXPANSION COEFFICIENTS

-. Polymer M Lp('e -

a) d) ~ 1)11,M
a)A .1 1 . 18 8d 29.7xIO- 6.2xlCr. i.16

10.0 b)I 1 9 5 e) .xO

1 . 1509
1. 2 1 6

1.1

a) ~ 1.~i 1.81) 1 0 m)
1.0 2.1) 71)

1  .0 5 7

M is the molecular weight between entanglements, calculated
e

from eqn. (16), P is the density at the temperature listed

in the reference, a is the bulk expansion coefficient below
g

T and a is that above T P CT is the mean density

extrapolated to T
g

a) Seitz (1979)

b) Masuda et al (1970)

c) Onogi et al (1970)

d) Fox et al (1958)

e) Kolb and Izard (1949) at 273 K

f) Gall and McCrum (1961) at 298 K

g) Rogers and Mandelkern (1957) at T

h) Fujino et al (1962) at 298 K

i) Brady and Yeh (1971)

j) Natta (1955)

k) Williams and Cleereman (1952)
1) van Krevelen (1976)

m) Calculated from data presented
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TABLE 9: DEPOLYMERISATION TEMPERATURES

Polymer Td j d/Tg

P A54a) 1.44

1PS 543b 1.46

a) Dosser 1983

b) Shell Plastics 1983
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I APPENDIX: CONPGUTATION OF THE DFORNATION DIAGRAMS GABApp, Disc 8

|p -. %

,:

The modulus E is calculated as a function of temperature T and

loading frequency v ("dynamic loading") as described below. Calculations

for modulus as a function of temperature and time ("stress relaxation")

follow the same method. The text describes models for the mechanisms

of deformation which determine the modulus, E. At the highest

temperatures, Z is determined by viscous flow. The

modulus Ev' is then determined by the faster

- of the two flow mechanisms (eqns. 19 and 20). As the temperature is

decreased, EvR increases until it exceeds the rubbery modulus ER  (eqn.

16); then this, not viscous flow, determines the modulus: E is set equal

to the lesser of ErR and ER. Further decrease in temperature introduces

the glass-rubber transition. Let the increase in modulus associated with

this transition be aE (defined below). Further drop in temperature

freezes out the 8, y and 6 relaxations; let the increase in modulus

caused by these be ESP E and &E Then the modulus, at temperature

T and frequency w is:

E (T,w) Least of (E and E) + &E + &E8 + 4E &4E (Al)

To proceed further, we require expressions for the individual terms.

Consider the 3 relaxation as an example. It is described by the array of

n Maxwell elements shown in Fig. 4(b). For a single element:

Then for the parallel array of Fig. 4(b), the following ccm £c±ve equatcns ,old.

For ca= -mt stain:

E (T,t) = E ,E exp (- ) A21 ..-.,

"... for constant strain rate:

Sn. 5 1

E (T,t) e ,-9( - exp (-- )) A3)

"1,7 and for dynamic loading (so that = C sin wt):
0



n sE.
-. . (T.,w)= Z(6E.

This last equation is the one we require for the present problem. Let the

total modulus change during the 6 transition be AE,. Then, for this

transition:

n sE.
E 6 E. 2

i=1 1 +(-
w S r.

where SE. = AE0 f (Q) 6Q '

and 6n. no exp() f (Q) SQ.

Similar expressions are used for the B and y transitions; the glass

transition only differs in the expression used for n: it is (eqn. 15):

C, (T- T

n on exp (- C + T - Tng

The rubbery flow regime is treated in a similar way.

An important quantity in each summation is the standard deviation of

the activation energy. It determines, through eqn. (5), the breadth of each

transition. The standard deviation of Q (for the B, Y and 6

transitions) and of C, (for the a and rubbery flow regimes) is listed in

$ Table 2 as the "fractional spread" in each quantity: AQ/Q and AC,/CL.
m

... .,v

4-
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T4g 1. Schematic showing the regimes of behaviour typical of an
amorphous polymer.j
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Fig. 3. Schematic of the secondary relaxations in PM4A and PS.
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E 16E

(a) (b). -

Fig. 4. (a) The standard linear solid; (b) the extended model. If a
Gaussian distribution of relaxation times is assumed, the model..
requires only one more parameter than the standard-linear solid
to describe i.t completely.
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Fig. 8. Schematic of viscous diffusive motion, or reptation, of a polymer
chain in the tube defined by its immediate surroundings.
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0 *0 gO00.00 Soo
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* 0~ 0 -0. 0 ' a0.00 0 -4
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Fig. 9. The diffusion of compressive kinks along a polymer chain, leading
to relative motion of chains.
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Fig. 10. Typical variation of specific volume with temperature for an 7

amorphous polymer.

Fig. 11. Schematic of a polymer network showing entanglement points
(marked 'E') which act like chemical cross-links.
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and y peaks in P?41A; (b) the a peak i PS (after McCr,
Read and Williams, 1967).
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rig. 13.omparison of data from vari.ous sources with the model:
(b) ?S at I Xz through T

(c) PS at I Hz at low temperature.
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Fig. 156. A deformation diagram for RM under dynamic loading conditions,
with~ E and 7/T as axes.
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Fig. 18. A deformation diagram for PS under dynamic loading conditions,
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Fig. 19. A deformation diagram for PS under dynamic loading conditions
with E and frequency v as axes. (The log v scale is
reversed to allow comparison with Figs. 21 and 23.)



LI
I.

IS..

k~.

*

F>

FILMED

~

i
DTIC


